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Abstract

We present Possession Sketches, a new machine learning method for organizing and exploring a
database of basketball player-tracks. Our method organizes basketball possessions by offensive struc-
ture. We ϐirst develop a model for populating a dictionary of short, repeated, and spatially registered
actions. Each action corresponds to an interpretable type of player movement. We examine statistical
patterns in these actions, and show how they can be used to describe individual player behavior. Lever-
aging this “vocabulary” of actions, we develop a hierarchical model that describes interactions between
players. Our approach draws on the topic-modeling literature, extending Latent Dirichlet Allocation
(LDA) through a novel representation of player movement data which uses techniques common in an-
imation and video game design. We show that our model is able to group together possessions with
similar offensive structure, allowing efϐicient search and exploration of the entire database of player-
tracking data. We show that our model ϐinds repeated offensive structure in teams (e.g. strategy), pro-
viding a much more sophisticated, yet interpretable lens into basketball player-tracking data.

1 Introduction

Player-tracking data present a unique challenge for basketball analytics. It is widely believed that a
windfall of quantitative insight is hidden in these data, in spatiotemporal patterns that coaches and
analysts typically process with human intuition. While there has been work toward quantifying player
ability [6], possession value [4, 3], and play classiϐication based on small sets of labeled plays [13],
methods for automatically organizing, summarizing, and interpreting basketball possessions have yet
to be fully developed.

As an example, consider the following use case for defensive scouting: an analyst is tasked with
ϐinding all possessions inwhich JamesHarden drives to the basket and passes the ball to a teammate for
a right corner three-point attempt. Simple engineering solutions for this scenario are easy to imagine:
ϐirst sub-select Rockets possessions with a right corner three-point attempt and then look for passes
from Harden that originate in the paint. However, adding search criteria quickly renders this ad hoc
solution intractable: ϐind sequences where Harden uses a high screen before driving to the basket and
then passes to the corner for a three-point attempt; ϐind sequences where Harden uses a high screen,
drives to the basket, passes to the corner and that teammate drives to the basket; ϐind sequences where
any Rocket uses a high screen, drives to the basket, etc. The landscape of relevant basketball scenarios
is far too vast and complex for ad hoc search solutions.

Furthermore, this type of sequential query is only one approach to gaining insight from player-
tracking data. We can imagine starting a research project by simply asking — what leads to a corner
three? What sort of patterns are employed by different offenses in order to get an open three-point
attempt? What sorts of actions do speciϐic players tend to do in order to generate an open three-point
attempt? Existing methodology falls short of supporting this kind of exploratory analysis with player-
tracking data.
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In this work, we bridge this gap by formulating a novel machine learning method to describe an en-
tire database of player-tracks. Our method uncovers characteristic patterns of offense in a way that is
searchable and interpretable. We ϐirst describe individual player’s actions by building a data-drivendic-
tionary of action templates derived from a statistical model. We then construct a model of possessions
that describes patterns in these action templates — common co-occurrences that create a signature of
offensive strategy. For each play, this yields a possession sketch, a concise summary of the offense’s ac-
tions in a basketball possession. Wemodel this structure at multiple levels— in dynamic actions taken
by individual players, as well as collective actions present in each possession.

Importantly, we construct ourmodel out of interpretable pieces—eachaction template canbe inter-
preted as a type of on- or off-ball cut. Further, pairs of actions are also interpretable—some correspond
to on-and off-ball screens, others correspond to drives and passes to various wings. Our use of proba-
bilistic graphicalmodels on an interpretable representation of the data allows for easier-to-understand
model output and inferences than recent deep learning approaches [13].

In the following section we describe the components of our method that generate action templates
and possession sketches. After describing our method, we explore the structure it reveals by looking at
three of the different organizational tools it makes possible:

• team possession maps: low-dimensional visualization of all of the offensive possessions of a team
— exploring this map reveals different set calls used by a team.

• shot possession maps: low-dimensional visualization of possessions that led to a particular type
of shot —we examine the different types of actions that lead to corner threes.

• possession basis: common and repeated actions discovered by the model — this establishes the
types of player interaction that make up the “vocabulary” of a basketball possession.

By integrating machine learning methods, statistics, and visualization, this work shows that we can
organize and systematically explore NBA possessions, allowing us to derive useful basketball intelli-
gence from the NBA’s vast and growing store of player-tracking data.

2 Methods

This section details the machine learning model we construct to recognize patterns at two resolutions:
spatiotemporal patterns in individual player trajectories (action templates), and co-occurrence of ac-
tions in each possession (possession sketches).

Before we go into further detail, the overall procedure behind our method can be decomposed into
the following steps:

• Segmentation: We cut possession-length (e.g. 5-24 second) player trajectories into shorter, more
manageable segments (e.g. .6-8 second) based on moments of sustained low-velocity.

• Learning action templates: We formulate a novel statistical clustering algorithm to learn which
action is represented by each short segment.

• Possessionmodeling: We represent each possession as a “bag” of pair-actions, and ϐit a possession-
level hierarchical model inspired by the document modeling and natural language processing lit-
erature.

The following subsections describe the process of applying the above steps to a large data set of bas-
ketball player-tracks.

2.1 Data and preprocessing

We analyze a database of player-tracks from the 2014-2015 season of the NBA. The data are organized
into over N = 190,000 possessions (and possessions into quarters and games). For each possession
(indexed byn), wemodel the trajectories of players on offense. For each player (indexed by j) in posses-
sion n, we cut their trajectory (denotedx(n)

j ) into short segments at locations of sustained low-velocity.
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Figure 1: Examples of trajectory segments resulting from the “sustained-low-velocity-moment” ϐinding
algorithm. In each example, the left plot depicts the spatial trajectory with cut points denoted by the red
dots (with the order of the cuts labeled). The right plot depicts the approximate magnitude of the velocity
at each moment during the possession, with the corresponding cut points.

To do this, we ϐirst detect moments of low velocity by inspecting the smoothed ϐirst difference of the
trajectory. At sustained moments of low velocity (> .25 seconds below a threshold of .1 feet per sec-
ond), we cut the possession, resulting in a collection of shorter segments. Figure 1 depicts four example
trajectories, cut into various number of segments.

We refer to these shorter trajectory segments asx(n)
j1

, . . . ,x
(n)
jS

, where it is understood that the num-
ber of segments, S, varies for each possession-player pair. The resulting short segments are on average
2.25 seconds (the interior 95 percentiles range from 0.6 to 7.96 seconds). Applying this preprocessing
step to the full 2014-2015 regular season creates a data set of roughly 4.5million segment observations.

2.2 Action Templates: Segment Clustering

Our method assumes that each short trajectory segment represents some discrete action, and each
player performs a series of actions throughout the course of a possession. For instance, a player might
(i) make a cut along the baseline and then (ii) camp out in the corner. Alternatively, a player can (i)
make a cut along the 3-point line, (ii) stand at the break, then (iii) cut toward the basket. In order to
decompose a player’s trajectory into a set of actions, wemust ϐirst infer a meaningful set of actions that
all players share. We use a data-driven approach to infer this set of actions, each action’s structure, and
the action label for each trajectory segment.

To accomplish this, we construct a probabilistic clustering algorithm tailored for functional data
(i.e. continuous trajectories). Our model posits that each trajectory segment represents one of V dis-
crete actions, where each action is characterized by a template. Each template can be thought of as
a cluster center — each observed trajectory segment is centered around a template with some devi-
ation. We specify each template as a Bezier curve – a tool commonly used to model movement in the
computer graphics community – which speciϐies a function B(t) that maps time to a two-dimensional
point, B : [0, 1] 7→ R2. This maps out a dynamic curve through space, which describes the movement
of each action. See the appendix for technical details.

Figure 2 depicts a sampling of learned templates resulting from ϐitting a mixture of V = 250 Bezier
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Figure 2: A sampling of action templates. Our method automatically builds a taxonomy of commonly
repeatedmovements sharedamongall players (i.e.actions). In each column, the topplot depicts the spatial
trajectory for a single action template. The light blue lines are real segment trajectories that fall in that
cluster. Below each action plot is a histogramof segment lengths (in seconds) for all segments that fall into
that cluster — some actions are shorter or longer (on average) than others. For a more dynamic picture
of an action template, please view this animated ϐigure: https://youtu.be/-a6_Ot6etmk

curves to the processed trajectory segments. The output of this model allows us to succinctly represent
each trajectory segment as a single integer, v = 1, . . . , 250. We view these actions as a kind of vocab-
ulary — each possession combines words in the vocabulary to describe structured interactions that
characterize the possession. Following this thread, we turn to statistical methods originally devised for
modeling documents, and adapt them to basketball sequences.

2.3 Possession Model

Offensive possessions are highly structured. When JamesHarden drives toward the basket, drawing de-
fender attention, his teammates are not distributed randomly on the ϐloor— it is likely that at least one
teammate is in the cornerwaiting for a pass; it is likely that other teammates vacate the paint, and begin
jockeying for rebounding position. The structure of an offensive possession is created by the individual
actions that each player performs throughout the possession. Which actions tend to simultaneously
co-occur? Which actions tend to precede or follow other actions? Our possession model seeks to an-
swer these questions by ϐirst observing that these actions are a lot like words. Words are interwoven
sequentially to express a coherent idea; player actions are interwoven sequentially to implement a co-
herent strategy. We run with this analogy by adapting topic models [1] to describe sequences of actions
in basketball possessions.

We use Latent Dirichlet Allocation (LDA) [2], a topic model for unsupervised structure discovery in
a corpus of text documents. LDA is a latent factor model, similar to factor analysis or principal com-
ponents analysis. In document modeling, LDA describes each document as a mixture of topics, where
each topic is a distribution over the entire vocabulary of words. As a concrete example, LDA applied to
a corpus of Science articles ϐinds topics corresponding to cancer (e.g. probable words are “tumor”, “cell”,
“cancer”, etc.), and neuroscience (“synaptic”, “neurons”, “hippocampal”, etc.), among many others (see
[8, 1]).

In our application, rather than topics, we represent each possession as amixture of strategies, where
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Figure 3: The “bag of words” construction of each possession. Each “word” represents two actions that
occur simultaneously throughout the course of the possession, where actions are inferred with the action
template model presented in Section 2.2. In the toy example depicted, we have three players, each per-
forming a sequence of actions (corresponding to the four colors). At each moment in time, we enumerate
all unique pairs of actions. We represent the entire possession as a bag of these pair-action counts.

each strategy is a distribution over co-occurring actions that are frequently observed in the data. We
then use LDA to infer the strategies employed in each offensive possession (as well as the set of strate-
gies themselves). LDA requires thatwe represent each possession as a “bag ofwords”—a vectorwhere
each entry corresponds to a unique word and represents the number of times that word occurs in the
possession. To do this, we need to ϐirst establish a vocabulary.¹ Our ϐirst approach was to simply count
the number of each v = 1, . . . , V actions in each possession. This approach is appealing in its simplic-
ity, and does reveal interesting structure. However, this representation ignores interactions between
players and temporal structure.

In this work we use a vocabulary of pair-actions, where each “word” in the vocabulary is a unique
pair of theV actions, (vi, vj) for vi, vj ∈ {1, . . . , V } and vi ̸= vj . We then represent each possession as a
“bag of simultaneous pair-actions”, mapping the “bag ofwords” concept from topicmodels to basketball
interactions. For each possession, we simply count the number of times each unique pair of actions
simultaneously occur. We string these counts into a single vector, which represent possession n

Yn,d = # times action action pair d = (v1, v2) appears in possession n. (1)

Figure 3 illustrates the construction of our pair-action vocabulary that we use to succinctly represent
each possession. To incorporate ball possession information, we deϐine each action as “with” or “with-
out” the ball², resulting in 2 · V total player actions. We include pair-actions that appear in at least 100
possessions, resulting in about 25,000 unique pair-actions in our vocabulary. This representation al-
lows us to apply LDA to basketball possessions. To ϐit this model to the over 190,000 possessions in the
season, we use a recently developed scalable Bayesian inference technique [9]. See the appendix for
technical details.

This model yields a low-dimensional embedding of every NBA play that allows us to quickly as-
sess similarities between possessions and explore the space of team offensive strategies. We can create
interactive graphics (a dynamic version of Figure 5a), where each point in space represents a full pos-
session and nearby points indicate “similar” possessions— possessions that share the same pattern of
actions. The following section dives deeper into this exploration tool, and what it can afford an analyst.
The topics themselves encode strategic co-occurrences of actions, and using these topics we can shed

¹Indocumentmodeling, the vocabulary is typically the vocabularyof the language itself, withminimal preprocessing. Common
sequences of two or three words (bi-grams and tri-grams) are sometimes included in the vocabulary to improve the model.

²An action is considered “with” ball if the player possesses the ball for the majority of the segment.
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Figure 4: The result of ϐitting aK = 100 topic possessionmodel. A “topic” in our framework corresponds
to a distribution over pairs of actions. Above, we show common pairs of actions from 8 of the 100 top-
ics. We observe that topics tend to pick up on combinations of actions that include common actions. For
instance, the top two pair-actions in topic 0 includes a cut along the 3-point line while a teammate cuts
nearby (perhaps setting an off-ball screen).

light on the fundamental building blocks of collective action on the basketball court. Inspecting these
topics can help us quantify what exactly makes a unique offense unique.

3 Analysis

In this section we explore the output of the possession level model to see which patterns are repre-
sented. We focus on the following aspects of model output

• basketball topics: we see which pair-actions are represented by each of theK = 100 topics. This
tells us not only which pair-actions occur frequently, but which pair-actions co-occur in posses-
sions, revealing fundamental patterns of basketball offenses.

• possession sketch: each possession is characterized as a distribution over topics (or strategies),
and “similarity” between possessions can be measured using this distribution. We explore what
our model describes as similar, and we empirically test this notion of similarity by measuring
distances between sets of plays we previously inspected and labeled as similar.

In the following sections we explore the above concepts by visualizing and exploring possessions in
ways newly afforded by our framework.

3.1 Basketball Topics

Figure 4 graphically depicts a small sampling of basketball topics (i.e. strategies) discovered by the pos-
session model. The topics reveal which pair-actions are most common in our data set, and we do see
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Figure 5: Left: map of 2014-2015 Warriors possessions, with a small set of known “weave” plays high-
lighted in red. The weave plays tend to cluster together in this visualization. We verify this by computing
the average distance between two weave possessions and between a weave and a randomWarriors pos-
session of a similar length. This indicates that our topic-model-based representation is picking up on
patterns that are able to (mostly) distinguish between semantically different plays.

patterns emerge. As a concrete example, if a particular possession “loads” onto topic 3³ then that pos-
session is more likely to include the pair-actions depicted in Figure 4d — a cut to the basket while a
teammate is standing in either of the two corners. Topic 5 prominently includes possessions with a
baseline cut from the right block to the left break. Note that there are many more pair-actions with
signiϐicant probability than the ones depicted, and there are many more topics than we depict.

Sparsity We also notice that each possession topic vector is quite sparse— on average only 8 of the
100 entries are non-zero. This is expected and desired behavior — each possession can only include a
small number of offensive patterns from the wide array of available tactics.

3.2 Possession Map Exploration

Each possession has an associated possession sketch — a per-topic vector that describes how much of
each of the basketball topics (a subset illustrated in Figure 4) are featured in that possession. We can use
these possession sketches to reason about large sets of basketball possessions. In this section we se-
lect the offensive possessions of the 2014-2015 Golden State Warriors (over 6,000 possessions). With
each possession succinctly described by a (sparse) 100-dimensional topic vector, we use the dimen-
sionality reduction technique t-SNE [10] to visualize these vectors in 2-dimensions. This method ϐinds
a 2-dimensional representation of each 100-dimensional vector such that the distance in 2-d is simi-
lar to the distance in 100-d (emphasizing the preservation of local distances).⁴ Figure 5 visualizes all
Warriors possessions in 2014-2015.

We test the notion of “similarity” in topic space by examining a group of hand-labeled set plays, a
“weave play”. We animate two examples of the weave play in this animated ϐigure: https://youtu.
be/KRDsTLMm7FY. We hand-label 40 weave plays in the 2014-2015 season, and visualize them in the

³i.e. the possession sketch vector is large along the dimension corresponding to topic 3
⁴For intuition, t-SNE tends to yield a visualization where locally clustered points are close in distance in the full, 100-

dimensional topic space; points that are farther away from each other tend to be far, but could also be close.
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t-SNE Warriors map (Figure 5a, in red). We can visually verify in Figure 5 that the possession sketch
preserves this notion of similarity —weave plays tend to cluster around other weave plays.

We can further measure this clustering by comparing two distributions of possession sketch dis-
tances: (i) the distribution of distances between two weave plays, and (ii) the distribution of distances
between one weave, and one non-weave play. Figure 5b illustrates these two distributions. The aver-
age distance between the knownweave plays ismuch smaller than the average distance betweenweave
and non-weave plays. In fact, the nearest neighbor of each weave play is most often itself a weave play,
highlighting the potential of our technique to quickly ϐind a collection of plays similar to a chosen play.

3.3 Between Team Nearest Neighbors

Our method also identiϐies similar possession structure between different teams. To highlight this we
select a play at random, and search through the entire database of 190,000 possession sketches to ϐind
the most similar play. The resulting two possessions are compared in Figure 6. Chicago is on offense in
our ϐirst possession, and Brooklyn is on offense in the nearest-neighbor possession. Examining these
two possessions, we see a few salient similarities that shed light on what patterns our method is de-
tecting: (i) the point guard brings the ball up the left side of the ϐloor in each possession; (ii) a player
sets a high screen on the left side, and the point guard curls around the screen toward the middle with
the ball; (iii) through both possessions a player camps out in the weak-side corner three; (iv) the point
guard attacks through the middle of the paint. The possession sketch contains this information— and
we can further inspect the particular basketball topics for this possession to see how this information
is summarized in our model.

3.4 Corner Threes

In this section we explore possession sketch similarity in the context of a particular type of shot — a
corner three. We ϐirst sub-select the 2014-2015 data to possessions that include corner three-point
shots for three teams: the Warriors, the Rockets, and the Spurs. We then apply t-SNE to visualize the
sketch for each possession in Figure 7a. We immediately notice that the possession sketches that lead
to corner threes overlap signiϐicantly between teams, however there are some regions of the space in
which the Rockets are more likely to inhabit than the Spurs.

We examine the structure of the possession-map clusters by zooming in on two groups on the op-
posite side of the map. Figure 7 compares two possessions in the cluster in the left-pane to two pos-
sessions in the cluster in the right pane. An immediate difference between the two clusters is that the
right pane includes a baseline cut toward the corner in which the shot is taken, whereas the left pane
includes a drive into the middle, and a pass out to a player camping out in the corner.⁵ Indeed, these
are two very different ways of ending up with a corner three point attempt, and our method identiϐies
this and allows us to efϐiciently explore this structural variation.

4 Discussion

Relatedwork Thispaperdevelops a framework for exploring interpretablepatterns inplayer-tracking
data—applicationsof this framework canenhanceplayer evaluationandmedia consumption. A similar
system for measuring play similarity was developed in [12], based on point-wise similarities in trajec-
tories. Ours is a more global approach — we ϐit a probabilistic model to an entire season’s worth of
player tracking data, directly modeling player interactions. The result is a more interpretable, succinct,
and scalable decomposition of possessions.

In [4, 3], the authors propose a stochastic process model to measure the moment-by-moment ex-
pected possession value (EPV) of a basketball sequence. They handcraft a set of basketball states that

⁵Please refer to animated ϐigures https://youtu.be/hUuPkE06rX4 (left pane) and https://youtu.be/mMcWuqgrj1w (right
pane).
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(a) frame1: (left) AaronBrooks brings the ball
along the left; (right) Deron Williams brings
the ball along the left

(b) frame2: (left) Taj Gibson sets a high screen
in the left frame; (right) Deron Williams waits
for a screen in the right frame.

(c) frame 3: (left) Aaron Brooks curls around
the screen anddrives; (right) Brook Lopez sets
a high screen for Deron Williams

(d) frame 4: (left) Aaron Brooks attacks the
basket; (right) Deron Williams curls around
the screen and drives

Figure 6: An example of two very similar possessions: each sub-ϐigure displays key frames from two pos-
sessions — one where Chicago has the ball and one where Brooklyn has the ball. These frames highlight
similar features between the two possessions. For a clearer picture of “possession similarity”, please nav-
igate to https://youtu.be/0Jlj6xekxeI to see these plays animated.

are used in themodel. Our approach ismore of a data-driven decomposition of basketball states thatwe
use for exploration (but could be used within an EPVmodel). Other examples that develop data-driven
representations from player-tracking data can be found in [11, 7, 6].

Futurework and conclusion There aremultiple avenues for futurework. Firstly, we can improve
the action template model by also inferring the number of actions using more sophisticated methods,
such as Bayesian nonparametrics. The action templates should also have more temporal structure —
auto-correlation and dynamic variance. Further, our possession sketch ignores much of the tempo-
ral information in each possession (a trade-off for statistical and computational efϐiciency). A future
project could further describe the time-varying nature of possession strategies, which, for example,
would allow us to identify which possessions may have started out in a “weave” set, but broke down
into a different sequence.

Insight derived from player-tracking data has been promised more than delivered. We reduce this
gap by devising a method that will have a profound impact on the use of player-tracking data for analy-
sis— from summarizing situational statistics (e.g. how often did the “weave” play succeed?), to search-
ing for similar plays (e.g. for post-game analysis), to discovering and quantifying previously unknown
habits of interaction between players (e.g. for team-speciϐic scouting).
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(a) Corner 3s

(b) Left cluster example: key frames (c) Right cluster example: key frames

Figure 7: Corner Three. The left pane cluster examples are similar in that they include a drive to the
basket, and a pass to a teammate camping out in the corner. The right pane cluster examples are similar
in that they include a baseline cut toward the corner in which the shot is taken. Please see the animated
ϐigures at https://youtu.be/hUuPkE06rX4 (left), and https://youtu.be/mMcWuqgrj1w (right).
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A Appendix

A.1 Segment Clustering Model Details

Our clustering model speciϐies V Bezier curve components, Bv : [0, 1] 7→ R2, each parameterized by
θv ∈ RP×2, where P is the number of control points used to characterize the curve.⁶

Bv(t; θv) = θ⊺vDP (t) (2)

DP (t) =

(
P

p

)
tp(1− t)P−p for p = 0, . . . , P − 1. (3)

Importantly, each curve can be speciϐied as a linear function with respect to parameters θv , with a non-
linear (but ϐixed) basis in time, DP (t). Bezier curves are a natural choice for these data — they are
ϐlexible, concisely parameterized, and easy to ϐit. The non-linear basis in time allows for a wide variety
of template shapes.

The complete functional clustering model is speciϐied as

z
(n)
js

∼ Pr(action|π) action type (4)
x
(n)
js,t

∼ N (Bv(t, θv),Σv) location at moment t (5)

We usemaximum likelihood to learn parameters θv, π, andΣv (and therefore each action) directly from
the data set of 4.5 million trajectory segments. To do so efϐiciently, we devise expectation maximiza-
tion [5] updates that exploit the linear structure of Bezier curves — each maximization step can be
computed using weighted least squares. Furthermore, each expectation step can operate on each seg-
ment in parallel, allowing us to scale ourmethod up to the 4.5million trajectory segments. We omit the
technical details of the inference procedure in this writeup for brevity.

A.2 Topic Model Details

Conceptually, LDA deϐines K topics, ϕk , each a distribution over actions. Each observed possession is
characterized by some latent distribution over topics, π(n), which describes the probability that a par-
ticular topic is expressed in possession n. These two distributions — possession-speciϐic proportions
and global topics — determine the probability of observing any particular action in possession n. LDA
posits the following data generating process to give rise to the matrix of counts

ϕk ∼ DirV (α0) for k = 1, . . . ,K (6)
π(n) ∼ DirK(α) for n = 1, . . . , N (7)
Yn,: ∼ Mult(Mn, p =

∑
k

π
(n)
k ϕk) (8)

whereMn is the total number of actions present in possession n (a ϐixed constant). We use statistical
inference techniques to infer both the global topics, Φ, and the possession-speciϐic proportions, π(n)

for all possessions. Due to the size of the dataset, we use stochastic variational inference [9], a scalable
method for Bayesian inference in hierarchical models.

⁶More control points allow for more ϐlexibility in ϐitting shapes—we use 10 control points in our experiments
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